Cloud-specific software architecture patterns
?What ([Motivation prHow (OWhen [Watch out!

=0k P

'Packaged configuration

Configuration is packaged with deployment artefacts

Simplify system, increase resilience by removing runtime dependency on
configuration service

Configuration is managed in configuration repository, CI/CD combines generic
application artefact with stage/tenant-specific configuration and deploys it

Multiple stages / tenants, build pipeline is flexible

No runtime update of configuration, configuration changes require redeployment

?
&

7
J

'Natural multi-tenancy

Each logical tenant and/or stage is an isolated installation
Simplify system by designing only for single tenant use
Each tenant runs in a dedicated and isolated environment
Groups of users requiring isolated setups

Problematic when users have access to multiple tenants

'Swarm uptime

= QG @ =

Combining uptime of multiple, unreliable service instances into high application
uptime

Lower cost by using cheap, volatile instances

The cloud runtime sends tasks to running service instances, but not to failing
instances. Failing instances are restarted automatically.

App instances don't rely on internal state, or that state can be restored easily. App
instances boot quickly.

Containerised applications must be able to handle arbitrary restarts

https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/

/



https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/

Cloud-specific software architecture patterns
?What ([Motivation prHow (OWhen [Watch out!

Ve

'Automated maintenance

? Offload maintenance tasks to runtime platform
Simplify application & project design
The cloud runtime handles maintenance tasks transparently

Periodic instance restarts to combat latent resource leaks, clean filesystem,
backup, store logs, produce metrics

Can't handle overly specific tasks

= Ol @

‘/V L]
Outscale caching
? Achieve high application performance

@9 Simplify application design by avoiding the complexity of caching
If? Scale service instances instead of caching data

Caching (and cache invalidation) are overly complex for the domain, service
instances don't rely on internal state, service invocation cascades are shallow,
latency requirements can be met

u Potentially resource-hungry
\

/

Service discovery

? Broker between service instances
Simplify application design by avoiding the complexity of service discovery

The cloud platform injects service location information as part of “Packaged
configuration” and routes requests dynamically at runtime

Always

None

=0k @

https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/



https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/

Cloud-specific software architecture patterns
?What ([Motivation prHow (OWhen [Watch out!

Ve

=04 P

Security and access control

Secure application easily

Simplify application design by delegating (more) access control to the cloud
runtime

Less infrastructure is exposed, access is controlled by the platform
Always

Reduced flexibility

Infrastructure as code

?

=05 &

Configure infrastructure through (versioned & audited) code

Simplify change management

Infrastructure as code allows defining entire systems through declarative scripts
In a cloud environment

Hard to get used to, slows down development, won’t work on non-cloud-native
infrastructure

https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/



https://blog.georgovassilis.com/2018/08/29/cloud-specific-software-architecture-patterns/

	Cloud-specific software architecture patterns

